Table 1. Fractional atomic coordinates and equivalent
isotropic displacement parameters ($Å^2$)

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$				
	x	у	z	U_{eq}
Cl(1)	1.2593(1)	1/4	-0.53474 (4)	0.0693 (2)
N(1)	0.7727 (5)	0.1887 (5)	-0.4616 (2)	0.063 (1)
C(1)	0.8101 (5)	0.262 (1)	-0.3835 (2)	0.0609 (9)
C(2)	0.6135 (6)	0.2025 (6)	-0.3349 (2)	0.055(1)
C(3)	0.6485 (5)	0.268 (1)	-0.2544 (2)	0.060(1)
C(4)	0.4546 (6)	0.2097 (8)	-0.2042(2)	0.059(1)
C(5)	0.4815 (6)	0.276 (1)	-0.1237 (2)	0.059(1)
C(6)	0.2874 (6)	0.2106 (7)	-0.0750 (2)	0.054 (1)
C(7)	0.3089 (6)	0.277 (1)	0.0066 (2)	0.058 (1)
C(8)	0.1148 (6)	0.2108 (7)	0.0546 (2)	0.057(1)
C(9)	0.1345 (5)	0.2761 (9)	0.1359 (2)	0.057(1)
C(10)	-0.0594 (6)	0.2076 (7)	0.1840 (2)	0.056(1)
C(11)	-0.0446 (6)	0.274 (1)	0.2646 (2)	0.068 (1)
C(12)	-0.2387 (8)	0.210(1)	0.3119 (2)	0.082 (2)

References

Gault, J. D., Gallardo, H. A. & Muller, H. J. (1985). Mol. Cryst. Liq. Cryst. 130, 163-177.

Gordon, M., Stenhagen, E. & Vand, V. (1953). Acta Cryst. 6, 739-741.

- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1993). TEXSAN. Single Crystal Structure Analysis Software, Version 1.6, MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Pinto, A. V. A., Vencato, I., Gallardo, H. & Mascarenhas, Y. P. (1987). Mol. Cryst. Lig. Cryst. 149, 29-40.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Vand, V., Morley, W. M. & Lomer, T. R. (1951). Acta Cryst. 4, 324-329.
- Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Table 2. Selected geometric parameters (Å, °)

N(1) - C(1)	1.492 (5)	C(6)—C(7)	1.526 (5
C(1)—C(2)	1.507 (5)	C(7)—C(8)	1.505 (5
C(2)—C(3)	1.510 (5)	C(8)—C(9)	1.517 (5
C(3)—C(4)	1.509 (5)	C(9)—C(10)	1.510 (5
C(4)—C(5)	1.510 (5)	C(10)—C(11)	1.508 (5
C(5)—C(6)	1.510 (5)	C(11)—C(12)	1.491 (6
N(1)-C(1)-C(2)	110.9 (4)	C(6)—C(7)—C(8)	114.3 (3)
C(1) - C(2) - C(3)	112.7 (3)	C(7)—C(8)—C(9)	114.8 (3)
C(2)—C(3)—C(4)	113.9 (4)	C(8)—C(9)—C(10)	114.6 (3
C(3) - C(4) - C(5)	115.4 (3)	C(9)—C(10)—C(11)	115.3 (3
C(4)—C(5)—C(6)	113.8 (4)	C(10)—C(11)—C(12)	115.3 (4
C(5)—C(6)—C(7)	114.8 (3)		
N(1)-C(1)—C(2)—C(3)	178.0 (5	5)
C(1)-C(2	2)—C(3)—C(4)	-179.8 (5	5)
C(2)—C(2	3)—C(4)—C(5)	-178.9 (5	5)
C(3)-C(4	4)—C(5)—C(6)	-178.6 (5	5)
C(4)—C(5)—C(6)—C(7)	-179.4 (5)
C(5)—C(6)—C(7)—C(8)	-179.8 (5)
C(6)—C(7)—C(8)—C(9)	179.9 (5	5)
C(7)—C(8)—C(9)—C(10)	-179.5 (5	i)
C(8)—C(9)—C(10)—C(11)	-179.0 (5	5)
C(9)-C(10 - c(1) - c(1)	2) 178.8 (5	b l

The scan width was $(1.37 + 0.35\tan\theta)^\circ$ with an ω -scan rate of 16.0° min⁻¹. The weak reflections $[I < 25.0\sigma(I)]$ were rescanned (maximum of four rescans) and the counts were accumulated to ensure good counting statistics. Stationary background counts were recorded on each side of the reflection. The ratio of peak counting time to background counting time was 2:1.

C(9)-C(10)-C(11)-C(12)

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1993). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: TEXSAN. Software used to prepare material for publication: TEXSAN.

Acta Cryst. (1995). C51, 2434-2437

An Almost Planar Hydrazine Moiety in a **Diels-Alder Adduct**

CAROLYN PRATT BROCK

Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055. USA

AYHAN S. DEMIR

Department of Chemistry, Middle East Technical University, Ankara 06531, Turkey

DAVID S. WATT

Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA

(Received 9 January 1995; accepted 11 May 1995)

Abstract

The structure of the product of the reaction of 1,3cyclooctadiene and N-phenyl-1,2,4-triazoline-3,5-dione has been identified as 4-phenyl-2,4,6-triazatricyclo- $[5.4.2.0^{2,6}]$ tridec-12-ene-3,5-dione (C₁₆H₁₇N₃O₂). The distinction between endo and exo addition cannot be made because the hydrazine moiety in the product molecule is almost planar.

Comment

In the course of developing a new reaction for the direct conversion of epoxides to dienes, we investigated the thermal reaction of 1,2-epoxycyclooctane, (1), with

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BK1118). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

hexamethylphosphoramide. The expected product was (1Z,3Z)-1,3-cyclooctadiene, (2). Unfortunately, the isolated yield in the conversion of (1) to (2) was low as a consequence of the volatility of (2). To solve this problem, the crude product containing (2) was subjected to a Diels-Alder reaction with N-phenyl-1,2,4-triazoline-3,5dione, (3) (hereafter PTAD) in order to produce the nonvolatile adduct (4). As expected, a single Diels-Alder adduct was isolated, which was assigned the structure endo-(4) on the basis of spectral data and the pathway expected for cycloadditions. The chemical shift of the vinylic protons in the ¹H NMR spectrum of the adduct appeared, however, at higher field than anticipated for fully pyramidal N atoms. These shifts raised the possibility that the adduct was exo-(4) rather than endo-(4). A structure determination was undertaken to resolve the ambiguity.

The three bonds around N1 (see Fig. 1) are approximately coplanar, as are the three bonds around N3. The dihedral angle between the rings C1,N1,N3,C4 and N1,C2,N2,C3,N3 is 15.0 (2)°. The angle α_{av} defined by Kaftory & Agmon (1984) is 119.6°. The molecule is one of the most planar of the 1,3-diene adducts of PTAD found in version 5.07 of the Cambridge Structural Database (Allen, Kennard & Taylor, 1983). There are only three other adducts having dihedral angles less than 25° and *R* factors less than 0.10 (see Adam, Klug, Peters, Peters & von Schnering, 1985; Krow, Lee, Szczepanski, Zacharias & Bailey, 1987).

The α_{av} value fits the trend described by Agmon, Kaftory, Nelsen & Blackstock (1986), who observed that α_{av} for PTAD-diene adducts increases with the length of the bridges. The molecule 4-phenyl-2,4,6-triazatetracyclo[6.3.2.0^{2,6}.0^{7,9}]trideca-10,12-diene-3,5-dione (Krow *et al.*, 1987) also has an α_{av} value very close to 120°.

The anisotropic displacement ellipsoids for atoms N1 and N3 are clearly elongated in the direction

Fig. 1. Perspective drawing of the molecule showing the atomnumbering scheme. The shapes of the ellipsoids correspond to 50% probability contours of atomic displacement. The H atoms and the the two C atoms of the minor conformer have been omitted for clarity.

perpendicular to the bonding plane and are larger than for other atoms at similar distances from the center of mass. Some closely related molecules (Agmon *et al.*, 1986) show the same feature, which can be interpreted in terms of the proximity of the structure to the transition state for double nitrogen inversion. It is also possible that both N atoms are slightly pyramidal. The smaller ellipsoids for adjacent C atoms would then imply that the displacements of the two N atoms relative to the mean plane are out of phase. These displacements might be correlated with the displacements of the disordered atoms C8 and C9 (see Fig. 2 and the *Experimental*).

Fig. 2. Drawing showing (left) the atomic ellipsoids before inclusion of the disorder model (right).

Examination of packing diagrams (see Fig. 3) reveals two reasonably short (Desiraju, 1991) C—H···O—C interactions $[O1\cdots C5(x - \frac{1}{2}, \frac{1}{2} - y, \frac{1}{2} + z) 3.316(3);$ $O1\cdots C23(-x, -y, -z) 3.361(3)$ Å]. N2 N3 C1 C2 C3 C4 C5 C6 C7 C81

C91

C82†

C92† C10 C21 C22

C23 C24

C25

C26

Fig. 3. Stereoscopic drawing of the unit cell. The b axis points from right to left, the c axis points downwards and the a axis points out of the plane of the paper.

Experimental

Crystals were grown by slow evaporation of ethyl acetate solutions.

Crystal data

$C_{16}H_{17}N_3O_2$	Mo $K\alpha$ radiation
$M_r = 283.33$	$\lambda = 0.7107 \text{ Å}$
Monoclinic	Cell parameters from 19
$P2_1/n$	reflections
a = 10.3828(7) Å	$\theta = 12.3 - 12.9^{\circ}$
b = 12.2813(7) Å	$\mu = 0.085 \text{ mm}^{-1}$
c = 10.9310(9) Å	T = 295(1) K
$\beta = 91.207 (6)^{\circ}$	Tablet (major faces are
$V = 1393.54 (17) Å^3$	$\{10\overline{1}\}, \{11\overline{1}\}, \{010\},$
Z = 4	{111}, {101})
$D_x = 1.350 \text{ Mg m}^{-3}$	$0.48 \times 0.42 \times 0.11$ mm
-	Colorless

Data collection

Enraf–Nonius CAD-4-VAX	1412 observed reflections
diffractometer	$[I > 2\sigma(I)]$
$\omega/2\theta$ scans	$\theta_{\rm max} = 25.0^{\circ}$
Absorption correction:	$h = 0 \rightarrow 13$
eight ψ scans (Flack,	$k = 0 \rightarrow 15$
1977)	$l = -14 \rightarrow 14$
$T_{\rm min} = 0.81, \ T_{\rm max} = 0.90$	3 standard reflections
2449 measured reflections	frequency: 60 min
2449 independent reflections	intensity decay: 0.6%

Refinement

Refinement on F^2 $(\Delta/\sigma)_{\rm max} = -0.012$ $\Delta \rho_{\rm max} = 0.141 \ {\rm e} \ {\rm \AA}^{-3}$ $R[F^2 > 2\sigma(F^2)] = 0.0415$ wR(F²) = 0.0950 $\Delta \rho_{\rm min} = -0.216 \ {\rm e} \ {\rm \AA}^{-3}$ S = 1.113Extinction correction: none 2448 reflections Atomic scattering factors 199 parameters from International Tables H atoms riding for Crystallography (1992, $w = 1/[\sigma^2(F_o^2) + (0.0589P)^2]$ Vol. C, Tables 4.2.6.8 and + 0.1185P] 6.1.1.4) where $P = (F_o^2 + 2F_c^2)/3$

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

$$U_{iso}$$
 for C82 and C92; $U_{eq} = (1/3)\sum_i \sum_j U_{ij} a_i^* a_i^* a_i a_j$ for others.

_ _

	х	у	Ζ	U_{eq}/U_{iso}
01	0.0504 (2)	0.22120 (14)	0.04501 (14)	0.0597 (5)
O2	-0.0115 (2)	0.29088 (14)	-0.36598 (14)	0.0563 (5)
N1	0.1511 (2)	0.3316 (2)	-0.0931 (2)	0.0570 (6)

-0.0164 (2)	0.24111 (15)	-0.1592 (2)	0.0424 (5)
0.1324 (2)	0.3524 (2)	-0.2186 (2)	0.0560 (6)
0.2716 (2)	0.3601 (2)	-0.0305 (2)	0.0492 (6)
0.0621 (2)	0.2597 (2)	-0.0564 (2)	0.0451 (6)
0.0308 (2)	0.2945 (2)	-0.2617 (2)	0.0446 (6)
0.2355 (2)	0.4032 (2)	-0.2868 (2)	0.0515 (6)
0.3625 (2)	0.3678 (2)	-0.2347 (2)	0.0576 (7)
0.3792 (2)	0.3479 (2)	-0.1170 (3)	0.0587 (7)
0.2194 (3)	0.5269 (2)	-0.2880 (2)	0.0595 (7)
0.1849 (5)	0.5796 (3)	-0.1646 (4)	0.0677 (14)
0.2837 (5)	0.5693 (3)	-0.0616 (4)	0.071 (2)
0.2675 (13)	0.5861 (9)	-0.1774 (8)	0.060 (4)
0.1929 (12)	0.5558 (10)	-0.0618 (10)	0.073 (4)
0.2667 (3)	0.4736 (2)	0.0248 (2)	0.0649 (8)
-0.1277 (2)	0.1726 (2)	-0.1589 (2)	0.0398 (5)
-0.1164 (2)	0.0664 (2)	0.1211 (2)	0.0466 (6)
-0.2244 (2)	0.0017 (2)	-0.1162 (2)	0.0534 (6)
-0.3424 (2)	0.0430 (2)	-0.1485 (2)	0.0581 (7)
-0.3528 (2)	0.1486 (2)	-0.1891 (2)	0.0605 (7)
-0.2458(2)	0.2140(2)	-0.1936(2)	0.0513 (6)

† Occupany factor 0.254 (7) (see below).

Table 2. Selected geometric parameters (Å, °)

1.214 (3)	C5—C6	1.317 (3)
1.214 (3)	C7—C82	1.488 (9)
1.344 (3)	C7—C81	1.544 (5)
1.406 (2)	C81—C91	1.513 (6)
1.456 (3)	C91—C10	1.521 (5)
1.393 (3)	C82—C92	1.542 (12)
1.396 (3)	C92—C10	1.572 (9)
1.429 (3)	C21—C22	1.373 (3)
1.348 (3)	C21—C26	1.373 (3)
1.457 (3)	C22—C23	1.376 (3)
1.487 (3)	C23—C24	1.366 (3)
1.520 (3)	C24—C25	1.374 (4)
1.491 (3)	C25—C26	1.374 (3)
1.529 (3)		
109.2 (2)	C5-C4-C7	112.8 (2)
127.4 (2)	C6-C5-C4	121.7 (2)
121.0 (2)	C5-C6-C1	121.1 (2)
111.1 (2)	C82—C7—C4	116.4 (5)
123.7 (2)	C4C7C81	115.9 (2)
125.1 (2)	C91—C81—C7	116.7 (4)
109.6 (2)	C81—C91—C10	116.2 (4)
128.7 (2)	C7—C82—C92	112.5 (10)
119.3 (2)	C82—C92—C10	113.7 (9)
109.1 (2)	C1-C10-C91	117.1 (2)
111.8 (2)	C1-C10-C92	111.7 (6)
112.2 (2)	C22—C21—C26	120.3 (2)
127.6 (2)	C22—C21—N2	119.8 (2)
127.2 (2)	C26C21N2	119.9 (2)
105.2 (2)	C21—C22—C23	119.8 (2)
127.7 (2)	C24—C23—C22	120.1 (2)
127.6 (2)	C23—C24—C25	119.9 (2)
104.7 (2)	C24—C25—C26	120.3 (2)
109.5 (2)	C21 -C26-C25	119.5 (2)
110.4 (2)		
	$\begin{array}{c} 1.214 (3) \\ 1.214 (3) \\ 1.344 (3) \\ 1.344 (3) \\ 1.406 (2) \\ 1.456 (3) \\ 1.393 (3) \\ 1.396 (3) \\ 1.429 (3) \\ 1.429 (3) \\ 1.429 (3) \\ 1.427 (3) \\ 1.520 (3) \\ 1.487 (3) \\ 1.520 (3) \\ 1.520 (3) \\ 1.529 (3) \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Disorder in the four-atom bridge (C7-C10) was apparent from observation of elongated ellipsoids for atoms C81 and C91 (see Fig. 2) and a short C81-C91 distance. The disorder was modeled with isotropic atoms C82 and C92, which have occupancy factors of 0.254 (7). The bond length C82--C92 was restrained to a target value of 1.531 (12) Å and the lengths C82-C7 and C92-C10 to a value of 1.524 (14) Å (Allen et al., 1987).

Data collection: CAD-4 diffractometer software (Enraf-Nonius, 1988). Cell refinement: CAD-4 diffractometer software. Program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993).

ASD and DSW acknowledge support from the North Atlantic Treaty Organization (grant 880346 D2). We thank Dr M. Kaftory for useful discussions.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: CR1189). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Adam, W., Klug, G., Peters, E.-M., Peters, K. & von Schnering, H. G. (1985). *Tetrahedron*, **41**, 2045–2056.
- Agmon, I., Kaftory, M., Nelsen, S. F. & Blackstock, S. C. (1986). J. Am. Chem. Soc. 108, 4477–4484.
- Allen, F. H., Kennard, O. & Taylor, R. (1983). Acc. Chem. Res. 16, 146-153.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Desiraju, G. (1991). Acc. Chem. Res. 24, 290-296.
- Enraf-Nonius (1988). CAD-4 Manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1977). Acta Cryst. A33, 890-898.
- Kaftory, M. & Agmon, I. (1984). J. Am. Chem. Soc. 106, 7785-7793.
- Krow, G. R., Lee, Y. B., Szczepanski, S. W., Zacharias, D. E. & Bailey, D. B. (1987). J. Am. Chem. Soc. 109, 5744–5749.
- Sheldrick, G. M. (1990). SHELXTL/PC. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1995). C51, 2437-2439

9α -Fluoro-16 α -methyl-3,17-dioxoandrosta-1,4-dien-11 β -yl 2-Butynoate

CAROLYN PRATT BROCK AND JIANGAO SONG

Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA

(Received 4 January 1995; accepted 9 May 1995)

Abstract

The structure of the title compound, $C_{24}H_{27}FO_4$, which was an unexpected reaction product, was determined in order to establish its connectivity.

Comment

The title compound was supposedly produced in a reaction in which the lithium salt of propyne was added to 9α -fluoro- 11β -hydroxy- 16α -methylandrosta-1,4-diene-3,17-dione, (1), in order to obtain the expected adduct 9α -fluoro- 11β , 17β -dihydroxy- 16α -methyl- 17α -propynylandrosta-1,4-diene-3-one, (2). Instead, com-

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved pound (3) was obtained unexpectedly. Efforts to identify the source of the one-carbon unit that comprises the carbonyl of the ester in (3) (*e.g.* adventitious DMF, *etc.*) proved uninformative. The mode of synthesis of (3) remains unexplained.

The combination of the rather flat steroid ring structure and the nearly cylindrical butynoate substituent might have been expected to be unfavorable for crystal packing, especially since the cylinder axis must make a fairly small angle with the plane normal. The displacement ellipsoids and the melting point, however, are both normal. The space group is common and there is one molecule in the asymmetric unit. The packing diagrams (Figs. 2 and 3) show that the butynoate substituents are aligned in columns by the translation along a. Columns fit together such that the butynoate stacks fit into cavities between steroid groups. The a axis is the morphological axis of the very long needles and there are fairly short (Desiraju, 1991) C-H···O=C distances in molecules related by this translation $[C6 \cdots O1^i 3.335(4)]$, $C19 \cdots O1^{i}$ 3.450 (4) and $C24 \cdots O4^{i}$ 3.627 (4) Å; symmetry code: (i) x - 1, y, z].

Fig. 1. Perspective drawing of the title molecule showing the atomnumbering scheme. The shapes of the ellipsoids correspond to 50% probability contours of atomic displacement. The H atoms have been omitted for clarity.

Acta Crystallographica Section C ISSN 0108-2701 ©1995